Note
Go to the end to download the full example code
Plot valuesΒΆ
Here is an example of how to plot values with color scales. And also to plot an interpolated image.
from pprint import pprint
import numpy as np
import matplotlib.pyplot as plt
from probeinterface import Probe, get_probe
from probeinterface.plotting import plot_probe
Download one probe:
manufacturer = 'neuronexus'
probe_name = 'A1x32-Poly3-10mm-50-177'
probe = get_probe(manufacturer, probe_name)
probe.rotate(23)
fake values
values = np.random.randn(32)
plot with values
fig, ax = plt.subplots()
poly, poly_contour = plot_probe(probe, contacts_values=values,
cmap='jet', ax=ax, contacts_kargs={'alpha' : 1}, title=False)
poly.set_clim(-2, 2)
fig.colorbar(poly)

<matplotlib.colorbar.Colorbar object at 0x7fca48597d30>
generated an interpolated image and plot it on top
image, xlims, ylims = probe.to_image(values, pixel_size=4, method='linear')
print(image.shape)
fig, ax = plt.subplots()
plot_probe(probe, ax=ax, title=False)
im = ax.imshow(image, extent=xlims+ylims, origin='lower', cmap='jet')
im.set_clim(-2,2)
fig.colorbar(im)

(127, 67)
<matplotlib.colorbar.Colorbar object at 0x7fca3c485c00>
works with several interpolation methods
image, xlims, ylims = probe.to_image(values, num_pixel=1000, method='nearest')
fig, ax = plt.subplots()
plot_probe(probe, ax=ax, title=False)
im = ax.imshow(image, extent=xlims+ylims, origin='lower', cmap='jet')
im.set_clim(-2,2)
fig.colorbar(im)
plt.show()

Total running time of the script: (0 minutes 1.734 seconds)